Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Mar Drugs ; 21(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132922

RESUMO

In this work, we extracted chitosan from marine amphipods associated with aquaculture facilities and tested its use in crop protection. The obtained chitosan was 2.5 ± 0.3% of initial ground amphipod dry weight. The chemical nature of chitosan from amphipod extracts was confirmed via Raman scattering spectroscopy and Fourier transform infrared spectroscopy (FTIR). This chitosan showed an 85.7-84.3% deacetylation degree. Chitosan from biofouling amphipods at 1 mg·mL-1 virtually arrested conidia germination (ca. sixfold reduction from controls) of the banana wilt pathogenic fungus Fusarium oxysporum f. sp cubense Tropical Race 4 (FocTR4). This concentration reduced (ca. twofold) the conidia germination of the biocontrol fungus Pochonia chlamydosporia (Pc123). Chitosan from amphipods at low concentrations (0.01 mg·mL-1) still reduced FocTR4 germination but did not affect Pc123. This is the first time that chitosan is obtained from biofouling amphipods. This new chitosan valorizes aquaculture residues and has potential for biomanaging the diseases of food security crops such as bananas.


Assuntos
Anfípodes , Quitosana , Fusarium , Musa , Animais , Musa/microbiologia , Quitosana/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fungos
3.
Insects ; 14(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37367336

RESUMO

Alien species must adapt to new biogeographical regions to acclimatise and survive. We consider a species to have become invasive if it establishes negative interactions after acclimatisation. Xylella fastidiosa Wells, Raju et al., 1986 (XF) represents Italy's and Europe's most recent biological invasion. In Apulia (southern Italy), the XF-encountered Philaenus spumarius L. 1758 (Spittlebugs, Hemiptera: Auchenorrhyncha) can acquire and transmit the bacterium to Olea europaea L., 1753. The management of XF invasion involves various transmission control means, including inundative biological control using Zelus renardii (ZR) Kolenati, 1856 (Hemiptera: Reduviidae). ZR is an alien stenophagous predator of Xylella vectors, recently entered from the Nearctic and acclimated in Europe. Zelus spp. can secrete semiochemicals during interactions with conspecifics and prey, including volatile organic compounds (VOCs) that elicit conspecific defence behavioural responses. Our study describes ZR Brindley's glands, present in males and females of ZR, which can produce semiochemicals, eliciting conspecific behavioural responses. We scrutinised ZR secretion alone or interacting with P. spumarius. The ZR volatilome includes 2-methyl-propanoic acid, 2-methyl-butanoic acid, and 3-methyl-1-butanol, which are consistent for Z. renardii alone. Olfactometric tests show that these three VOCs, individually tested, generate an avoidance (alarm) response in Z. renardii. 3-Methyl-1-butanol elicited the highest significant repellence, followed by 2-methyl-butanoic and 2-methyl-propanoic acids. The concentrations of the VOCs of ZR decrease during the interaction with P. spumarius. We discuss the potential effects of VOC secretions on the interaction of Z. renardii with P. spumarius.

4.
Microorganisms ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838405

RESUMO

This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).

5.
J Fungi (Basel) ; 8(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012831

RESUMO

The entomopathogenic fungus Beauveria bassiana (Bb) is used to control the red palm weevil (RPW) Rhyncophorus ferrugineus (Oliver). Beuveria bassiana can infect and kill all developmental stages of RPW. We found that a solid formulate of B. bassiana isolate 203 (Bb203; CBS 121097), obtained from naturally infected RPW adults, repels RPW females. Fungi, and entomopathogens in particular, can produce volatile organic compounds (VOCs). VOCs from Bb203 were analyzed using gas chromatography-mass spectrometry (GC-MS). GC-MS identified more than 15 VOCs in B. bassiana not present in uninoculated (control) formulate. Both ethenyl benzene and benzothiazole B. bassiana VOCs can repel RPW females. Our findings suggest that B. bassiana and its VOCs can be used for sustainable management of RPW. They could act complementarily to avoid RPW infestation in palms.

6.
BMC Genomics ; 23(1): 101, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123406

RESUMO

BACKGROUND: Pochonia chlamydosporia is an endophytic fungus used for nematode biocontrol that employs its cellular and molecular machinery to degrade the nematode egg-shell. Chitosanases, among other enzymes, are involved in this process. In this study, we improve the genome sequence assembly of P. chlamydosporia 123, by utilizing long Pacific Biosciences (PacBio) sequence reads. Combining this improved genome assembly with previous RNA-seq data revealed alternative isoforms of a chitosanase in the presence of chitosan. This study could open new insights into understanding fungal resistance to chitosan and root-knot nematode (RKN) egg infection processes. RESULTS: The P. chlamydosporia 123 genome sequence assembly has been updated using long-read PacBio sequencing and now includes 12,810 predicted protein-coding genes. Compared with the previous assembly based on short reads, there are 701 newly annotated genes, and 69 previous genes are now split. Eight of the new genes were differentially expressed in fungus interactions with Meloidogyne javanica eggs or chitosan. A survey of the RNA-seq data revealed alternative splicing in the csn3 gene that encodes a chitosanase, with four putative splicing variants: csn3_v1, csn3_v2, csn3_v3 and csn3_v4. When P. chlamydosporia is treated with 0.1 mg·mL- 1 chitosan for 4 days, csn3 is expressed 10-fold compared with untreated controls. Furthermore, the relative abundances of each of the four transcripts are different in chitosan treatment compared with controls. In controls, the abundances of each transcript are nil, 32, 55, and 12% for isoforms csn3_v1, csn3_v2, csn3_v3 and csn3_v4 respectively. Conversely, in chitosan-treated P. chlamydosporia, the abundances are respectively 80, 15%, 2-3%, 2-3%. Since isoform csn3_v1 is expressed with chitosan only, the putatively encoded enzyme is probably induced and likely important for chitosan degradation. CONCLUSIONS: Alternative splicing events have been discovered and described in the chitosanase 3 encoding gene from P. chlamydosporia 123. Gene csn3 takes part in RKN parasitism process and chitosan enhances its expression. The isoform csn3_v1 would be related to the degradation of this polymer in bulk form, while other isoforms may be related to the degradation of chitosan in the nematode egg-shell.


Assuntos
Quitosana , Hypocreales , Tylenchoidea , Animais , Glicosídeo Hidrolases , Hypocreales/genética
7.
Front Fungal Biol ; 3: 980341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746197

RESUMO

Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.

8.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808705

RESUMO

Fungal LysM effector proteins can dampen plant host-defence responses, protecting hyphae from plant chitinases, but little is known on these effectors from nonpathogenic fungal endophytes. We found four putative LysM effectors in the genome of the endophytic nematophagous fungus Pochonia chlamydosporia (Pc123). All four genes encoding putative LysM effectors are expressed constitutively by the fungus. Additionally, the gene encoding Lys1-the smallest one-is the most expressed in banana roots colonised by the fungus. Pc123 Lys1, 2 and 4 display high homology with those of other strains of the fungus and phylogenetically close entomopathogenic fungi. However, Pc123 Lys3 displays low homology with other fungi, but some similarities are found in saprophytes. This suggests evolutionary divergence in Pc123 LysM effectors. Additionally, molecular docking shows that the NAcGl binding sites of Pc123 Lys 2, 3 and 4 are adjacent to an alpha helix. Putative LysM effectors from fungal endophytes, such as Pc123, differ from those of plant pathogenic fungi. LysM motifs from endophytic fungi show clear conservation of cysteines in Positions 13, 51 and 63, unlike those of plant pathogens. LysM effectors could therefore be associated with the lifestyle of a fungus and give us a clue of how organisms could behave in different environments.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/fisiologia , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/classificação , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Hifas , Hypocreales/fisiologia , Modelos Moleculares , Plantas/metabolismo , Plantas/microbiologia , Conformação Proteica , Relação Estrutura-Atividade
9.
Environ Microbiol ; 23(9): 4980-4997, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33496078

RESUMO

Climate change makes plant-parasitic nematodes (PPN) an increasing threat to commercial crops. PPN can be managed sustainably by the biocontrol fungus Pochonia chlamydosporia (Pc). Chitosan generated from chitin deacetylation enhances PPN parasitism by Pc. In this work, we investigate the molecular mechanisms of Pc for chitosan resistance and root-knot nematode (RKN) parasitism, using transcriptomics. Chitosan and RKN modify the expression of Pc genes, mainly those involved in oxidation-reduction processes. Both agents significantly modify the expression of genes associated to 113 GO terms and 180 Pc genes. Genes encoding putative glycoproteins (Pc adhesives) to nematode eggshell, as well as genes involved in redox, carbohydrate and lipid metabolism trigger the response to chitosan. We identify genes expressed in both the parasitic and endophytic phases of the Pc lifecycle; these include proteases, chitosanases and transcription factors. Using the Pathogen-Host Interaction database (PHI-base), our previous RNA-seq data and RT-PCR of Pc colonizing banana we have investigated genes expressed both in the parasitic and endophytic phases of Pc lifecycle.


Assuntos
Quitosana , Hypocreales , Nematoides , Tylenchoidea , Animais , Hypocreales/genética , Transcriptoma , Tylenchoidea/genética
10.
Front Plant Sci ; 11: 572087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250907

RESUMO

In this work, we use electrophysiological and metabolomic tools to determine the role of chitosan as plant defense elicitor in soil for preventing or manage root pests and diseases sustainably. Root exudates include a wide variety of molecules that plants and root microbiota use to communicate in the rhizosphere. Tomato plants were treated with chitosan. Root exudates from tomato plants were analyzed at 3, 10, 20, and 30 days after planting (dap). We found, using high performance liquid chromatography (HPLC) and excitation emission matrix (EEM) fluorescence, that chitosan induces plant hormones, lipid signaling and defense compounds in tomato root exudates, including phenolics. High doses of chitosan induce membrane depolarization and affect membrane integrity. 1H-NMR showed the dynamic of exudation, detecting the largest number of signals in 20 dap root exudates. Root exudates from plants irrigated with chitosan inhibit ca. twofold growth kinetics of the tomato root parasitic fungus Fusarium oxysporum f. sp. radicis-lycopersici. and reduced ca. 1.5-fold egg hatching of the root-knot nematode Meloidogyne javanica.

11.
Insects ; 11(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781701

RESUMO

Fungal Volatile Organic Compounds (VOCs) repel banana black weevil (BW), Cosmopolites sordidus (Germar, 1824), the key-pest of banana [Musa sp. (Linnaeus, 1753)]. The entomopathogens Beauveria bassiana (Bb1TS11) and Metarhizium robertsii (Mr4TS04) were isolated from banana plantation soils using an insect bait. Bb1TS11 and Mr4TS04 were pathogenic to BW adults. Bb1TS11, Bb203 (from infected palm weevils), Mr4TS04 and the nematophagous fungus Pochonia clamydosporia (Pc123), were tested for VOCs production. VOCs were identified by Gas Chromatography/Mass Spectrometry-Solid-Phase Micro Extraction (GC/MS-SPME). GC/MS-SPME identified a total of 97 VOCs in all strains tested. Seven VOCs (styrene, benzothiazole, camphor, borneol, 1,3-dimethoxy-benzene, 1-octen-3-ol and 3-cyclohepten-1-one) were selected for their abundance or previous record as insect repellents. BW-starved adults in the dark showed the highest mobility to banana corm in olfactometry bioassays. 3-cyclohepten-1-one (C7), produced by all fungal strains, is the best BW repellent (p < 0.05), followed by 1,3-dimethoxy-benzene (C5). The rest of the VOCs have a milder repellency to BW. Styrene (C1) and benzothiazole (C2) (known to repel palm weevil) block the attraction of banana corm and BW pheromone to BW adults in bioassays. Therefore, VOCs from biocontrol fungi can be used in future studies for the biomanagement of BW in the field.

12.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650540

RESUMO

Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.


Assuntos
Quitosana/metabolismo , Fungos/metabolismo , Plantas/metabolismo , Antibacterianos/farmacologia , Biotecnologia , Quitosana/química , Quitosana/farmacologia , Fungos/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/efeitos dos fármacos
13.
Sci Rep ; 8(1): 2170, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391415

RESUMO

Chitin deacetylases (CDAs) act on chitin polymers and low molecular weight oligomers producing chitosans and chitosan oligosaccharides. Structurally-defined, partially deacetylated chitooligosaccharides produced by enzymatic methods are of current interest as bioactive molecules for a variety of applications. Among Pochonia chlamydosporia (Pc) annotated CDAs, gene pc_2566 was predicted to encode for an extracellular CE4 deacetylase with two CBM18 chitin binding modules. Chitosan formation during nematode egg infection by this nematophagous fungus suggests a role for their CDAs in pathogenicity. The P. chlamydosporia CDA catalytic domain (PcCDA) was expressed in E. coli BL21, recovered from inclusion bodies, and purified by affinity chromatography. It displays deacetylase activity on chitooligosaccharides with a degree of polymerization (DP) larger than 3, generating mono- and di-deacetylated products with a pattern different from those of closely related fungal CDAs. This is the first report of a CDA from a nematophagous fungus. On a DP5 substrate, PcCDA gave a single mono-deacetylated product in the penultimate position from the non-reducing end (ADAAA) which was then transformed into a di-deacetylated product (ADDAA). This novel deacetylation pattern expands our toolbox of specific CDAs for biotechnological applications, and will provide further insights into the determinants of substrate specificity in this family of enzymes.


Assuntos
Amidoidrolases/metabolismo , Quitosana/metabolismo , Proteínas Fúngicas/metabolismo , Hypocreales/enzimologia , Acetilação , Domínio Catalítico , Proteínas Fúngicas/genética , Polimerização , Especificidade por Substrato
14.
Sci Rep ; 8(1): 1123, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348510

RESUMO

Pochonia chlamydosporia infects eggs and females of economically important plant-parasitic nematodes. The fungal isolates parasitizing different nematodes are genetically distinct. To understand their intraspecific genetic differentiation, parasitic mechanisms, and adaptive evolution, we assembled seven putative chromosomes of P. chlamydosporia strain 170 isolated from root-knot nematode eggs (~44 Mb, including 7.19% of transposable elements) and compared them with the genome of the strain 123 (~41 Mb) isolated from cereal cyst nematode. We focus on secretomes of the fungus, which play important roles in pathogenicity and fungus-host/environment interactions, and identified 1,750 secreted proteins, with a high proportion of carboxypeptidases, subtilisins, and chitinases. We analyzed the phylogenies of these genes and predicted new pathogenic molecules. By comparative transcriptome analysis, we found that secreted proteins involved in responses to nutrient stress are mainly comprised of proteases and glycoside hydrolases. Moreover, 32 secreted proteins undergoing positive selection and 71 duplicated gene pairs encoding secreted proteins are identified. Two duplicated pairs encoding secreted glycosyl hydrolases (GH30), which may be related to fungal endophytic process and lost in many insect-pathogenic fungi but exist in nematophagous fungi, are putatively acquired from bacteria by horizontal gene transfer. The results help understanding genetic origins and evolution of parasitism-related genes.


Assuntos
Hypocreales/genética , Hypocreales/metabolismo , Metaboloma , Proteoma , Transcriptoma , Cromossomos Fúngicos , Biologia Computacional/métodos , Duplicação Gênica , Transferência Genética Horizontal , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Filogenia , Plantas/microbiologia , Plantas/parasitologia , Seleção Genética
15.
Microbiol Res ; 204: 30-39, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28870289

RESUMO

Chitin is the second most abundant biopolymer after cellulose and virtually unexplored as raw material for bioethanol production. In this paper, we investigate chitosan, the deacetylated form of chitin which is the main component of shellfish waste, as substrate for bioethanol production by fungi. Fungal parasites of invertebrates such as the nematophagous Pochonia chlamydosporia (Pc) or the entomopathogens Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) are biocontrol agents of plant parasitic nematodes (eg. Meloidogyne spp.) or insect pests such as the red palm weevil (Rhynchophorus ferrugineus). These fungi degrade chitin-rich barriers for host penetration. We have therefore tested the chitin/chitosanolytic capabilities of Pc, Bb and Ma for generating reducing sugars using chitosan as only nutrient. Among the microorganisms used in this study, Pc is the best chitosan degrader, even under anaerobic conditions. These fungi have alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) encoding genes in their genomes. We have therefore analyzed their ethanol production under anaerobic conditions using chitosan as raw material. P. chlamydosporia is the largest ethanol producer from chitosan. Our studies are a starting point to develop chitin-chitosan based biofuels.


Assuntos
Beauveria/metabolismo , Quitosana/metabolismo , Etanol/metabolismo , Hypocreales/metabolismo , Metarhizium/metabolismo , Álcool Desidrogenase/classificação , Álcool Desidrogenase/genética , Anaerobiose , Animais , Beauveria/enzimologia , Beauveria/genética , Beauveria/crescimento & desenvolvimento , Biocombustíveis , Biomassa , Quitina/metabolismo , Besouros/microbiologia , Hypocreales/enzimologia , Hypocreales/genética , Hypocreales/crescimento & desenvolvimento , Metarhizium/enzimologia , Metarhizium/genética , Metarhizium/crescimento & desenvolvimento , Filogenia , Piruvato Descarboxilase/classificação , Piruvato Descarboxilase/genética , Tylenchoidea/microbiologia
16.
J Basic Microbiol ; 56(10): 1059-1070, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27259000

RESUMO

Chitosan antifungal activity has been reported for both filamentous fungi and yeast. Previous studies have shown fungal plasma membrane as main chitosan target. However, the role of the fungal cell wall (CW) in their response to chitosan is unknown. We show that cell wall regeneration in Neurospora crassa (chitosan sensitive) protoplasts protects them from chitosan damage. Caspofungin, a ß-1,3-glucan synthase inhibitor, showed a synergistic antifungal effect with chitosan for N. crassa but not for Pochonia chlamydosporia, a biocontrol fungus resistant to chitosan. Chitosan significantly repressed N. crassa genes involved in ß-1,3-glucan synthesis (fks) and elongation (gel-1) but the chitin synthase gene (chs-1) did not present changes in its expression. N. crassa cell wall deletion strains related to ß-1,3-glucan elongation (Δgel-1 and Δgel-2) were more sensitive to chitosan than wild type (wt). On the contrary, chitin synthase deletion strain (Δchs-1) showed the same sensitivity to chitosan than wt. The mycelium of P. chlamydosporia showed a higher (ca. twofold) ß-1,3-glucan/chitin ratio than that of N. crassa. Taken together, our results indicate that cell wall composition plays an important role on -sensitivity of filamentous fungi to chitosan.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Parede Celular/metabolismo , Quitosana/farmacologia , Equinocandinas/farmacologia , Lipopeptídeos/farmacologia , Neurospora crassa/metabolismo , Caspofungina , Quitina Sintase/biossíntese , Farmacorresistência Fúngica , Sinergismo Farmacológico , Micélio/efeitos dos fármacos , Neurospora crassa/efeitos dos fármacos , beta-Glucanas/metabolismo
17.
J Basic Microbiol ; 56(7): 792-800, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27213758

RESUMO

The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 µg ml(-1) while for other Trichoderma isolates MIC values were around 10 µg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp.


Assuntos
Membrana Celular/metabolismo , Quelantes/farmacologia , Quitosana/farmacologia , Fluidez de Membrana/fisiologia , Trichoderma/crescimento & desenvolvimento , Ácido alfa-Linolênico/metabolismo , DNA Intergênico/genética , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , RNA Ribossômico 18S/genética , Trichoderma/efeitos dos fármacos , Trichoderma/metabolismo
18.
Mol Biosyst ; 12(2): 391-403, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26694141

RESUMO

Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca(2+) increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca(2+) in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.


Assuntos
Antifúngicos/farmacologia , Membrana Celular/metabolismo , Quitosana/farmacologia , Neurospora crassa/metabolismo , Estresse Oxidativo , Transcriptoma/efeitos dos fármacos , Cálcio/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Genes Fúngicos , Homeostase , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/metabolismo
19.
J Plant Res ; 128(4): 665-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25982739

RESUMO

Plant crop yields are negatively conditioned by a large set of biotic and abiotic factors. An alternative to mitigate these adverse effects is the use of fungal biological control agents and endophytes. The egg-parasitic fungus Pochonia chlamydosporia has been traditionally studied because of its potential as a biological control agent of plant-parasitic nematodes. This fungus can also act as an endophyte in monocot and dicot plants, and has been shown to promote plant growth in different agronomic crops. An Affymetrix 22K Barley GeneChip was used in this work to analyze the barley root transcriptomic response to P. chlamydosporia root colonization. Functional gene ontology (GO) and gene set enrichment analyses showed that genes involved in stress response were enriched in the barley transcriptome under endophytism. An 87.5% of the probesets identified within the abiotic stress response group encoded heat shock proteins. Additionally, we found in our transcriptomic analysis an up-regulation of genes implicated in the biosynthesis of plant hormones, such as auxin, ethylene and jasmonic acid. Along with these, we detected induction of brassinosteroid insensitive 1-associated receptor kinase 1 (BR1) and other genes related to effector-triggered immunity (ETI) and pattern-triggered immunity (PTI). Our study supports at the molecular level the growth-promoting effect observed in plants endophytically colonized by P. chlamydosporia, which opens the door to further studies addressing the capacity of this fungus to mitigate the negative effects of biotic and abiotic factors on plant crops.


Assuntos
Ascomicetos/fisiologia , Hordeum/microbiologia , Nematoides/microbiologia , Estresse Fisiológico/fisiologia , Animais , Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/genética , Hordeum/metabolismo , Hordeum/parasitologia , Interações Hospedeiro-Patógeno , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais
20.
Fungal Genet Biol ; 65: 69-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530791

RESUMO

Pochonia chlamydosporia is a worldwide-distributed soil fungus with a great capacity to infect and destroy the eggs and kill females of plant-parasitic nematodes. Additionally, it has the ability to colonize endophytically roots of economically-important crop plants, thereby promoting their growth and eliciting plant defenses. This multitrophic behavior makes P. chlamydosporia a potentially useful tool for sustainable agriculture approaches. We sequenced and assembled ∼41 Mb of P. chlamydosporia genomic DNA and predicted 12,122 gene models, of which many were homologous to genes of fungal pathogens of invertebrates and fungal plant pathogens. Predicted genes (65%) were functionally annotated according to Gene Ontology, and 16% of them found to share homology with genes in the Pathogen Host Interactions (PHI) database. The genome of this fungus is highly enriched in genes encoding hydrolytic enzymes, such as proteases, glycoside hydrolases and carbohydrate esterases. We used RNA-Seq technology in order to identify the genes expressed during endophytic behavior of P. chlamydosporia when colonizing barley roots. Functional annotation of these genes showed that hydrolytic enzymes and transporters are expressed during endophytism. This structural and functional analysis of the P. chlamydosporia genome provides a starting point for understanding the molecular mechanisms involved in the multitrophic lifestyle of this fungus. The genomic information provided here should also prove useful for enhancing the capabilities of this fungus as a biocontrol agent of plant-parasitic nematodes and as a plant growth-promoting organism.


Assuntos
Ascomicetos/fisiologia , Genoma Fúngico , Nematoides/microbiologia , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Feminino , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Óvulo/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...